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Background: What is X-ray Scattering?

• Tool to measure structural properties of materials and characterize
macromolecules and nano-particle systems at micro and nano-scales.

• Expose sample to high-energy X-rays, which get scattered.

• Light intensities are
recorded as a scattering
pattern.

• Contains sample structural
information.

• A method: Grazing
Incidence Small-angle
X-ray Scattering (GISAXS).
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Simulations: Computing Scattered Light Intensities

Given

1 a sample structure model, and

2 experimental configuration,

simulate experiments and generate scattering patterns.

Based on Distorted Wave Born Approximation (DWBA) theory.

Q-grid: a 3D region grid in inverse space where scattered light intensities
are to be computed.

Intensity: is computed at each Q-grid point~q.
At a point~q, it is proportional to square of the sum of
Form Factors at~q, due to all structures in the sample:

I(~q) ∝

∣∣∣∣∣
S∑

s=1

F(~q)

∣∣∣∣∣
2
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Simulations: Computing Form Factors

• Form Factor at~q is defined as an integral
over shape surface.

F(~q) = − i
|q|2

∫
S(~r)

ei~qr·~rqn(~r)d2~r

• Approximated as a discretized surface
(triangulated surface) integral:

F(~q) ≈ − i
|q|2

t∑
k=1

ei~q·~rk qn,kσk
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Simulations: Computed Scattering Pattern Examples

Rectangular Grating with Undercut:

Organic Photovoltaics (OPV) Tomography:

Real Sample Model Scattering Pattern
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Why Simulate GISAXS Patterns?

• Structure prediction through fitting. Example:

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Why Simulate GISAXS Patterns?

• Structure prediction through fitting. Example:
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Why Parallelize and Accelerate?

Mismatch of data generation and data processing rates:

• High measurement rates of current state-of-the-art light sources.

• Extremely inefficient utilization of facilities due to mismatch.

• Example: Detectors at Linac Coherent Light Source (LCLS) in Stanford
can generate 100 MB/s. Collects 12 TB per week.

• Example: Next Generation Light Source (NGLS) at Berkeley Lab
envisions even higher data collection rates.

Accuracy Requirements

• Global error is proportional to the largest triangle’s circum-diameter→
increase triangulation resolution.

• For constant relative discretization error, finer triangulation requires
higher Q-grid resolution→ increase Q-grid resolution.

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Why Parallelize and Accelerate?

High Computational Requirements

• Computational complexity = O(nt)
n = number of q-points, t = number of triangles.

• Number of triangles = O(103) to O(106).

• Q-grid resolution = O(104) to O(108) points.

• Compute O(107) to O(1014) form factors for one experiment.

• Perform O(102) of experiments for one sample.

Science Gap

• Beam-line scientists lack access to fast algorithms and codes.

• Previously existing codes are limited in compute capabilities.

• Also, they are slow – wait for days and weeks to obtain results.

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Goals and Major Challenges

• Achieve near real-time computations.

• Perform large number of computations.

• Optimize already "embarrassingly parallel" computations.

• Use limited system memory.

• Minimize expensive communication and data transfers.

• Scale to state-of-the-art massively parallel systems (and be future ready).

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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A solution ...
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HipGISAXS: A High-Performance GISAXS Code

• Solves many limitations of previous codes.

• Implements new flexible algorithms to handle
• any complex morphology,
• multi-layered structures, and
• all sample rotation directions and beam angles.

• Implements parallelization methods:
• Deliver high-performance on massively parallel state-of-the-art clusters of

GPUs and multi-core CPUs.
• Bring computational time down to just seconds and minutes.

• Written in C++ with MPI, OpenMP and NVIDIA CUDA.

• Flexible and modularized code for future extensions.

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Computational Problem: The Form Factor Kernel

Input: 3 arrays, qx, qy, qz of lengths nx, ny, nz, resp., representing
a Q-grid of resolution n = nx × ny × nz, and
An array defining the triangulated shape surface as a set
of t triangles.

Output: A 3-D matrix M of size nx × ny × nz, where each
M(i, j, k) = F(qi, qj, qk) = F(~qi,j,k).

Environment: p node cluster of GPUs/multi-core CPUs.
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On clusters of GPUs ...
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Computation Decomposition Hierarchy

1. Across Multiple Nodes/Processes: Tiling

• Partition M along y and z dimensions
into grid of P = Py × Pz tiles.

• x dimension is typically small.

• Tile Mi,j is assigned to node Pi,j.

• Tile data is distributed to respective
nodes using MPI.

tile

nzp

M1,0

M0,0

M0,1

M1,1

nx

nyp

nyp

nzp
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Computation Decomposition Hierarchy

2. Handle Memory Limitations: Blocking

• Data may not fit in device memory.

• Partition local tile along x, y, and z
into blocks of size hx × hy × hz.

• Partition triangle array into segments
of size ht.

• Represent combinations of blocks
and segments as 4D hyperblocks.

hyperblock

ht

hyperblocks corresponding
to a single block

N

hy

hx

hz
nz

nx

ny

• Process one hyperblock at a time on device.

• Hyperblocks result in partial sums. All partial sums for a block are
reduced on host.
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Computation Decomposition Hierarchy
3. Within device: threading

Phase 1 Local Computations.

• Partition along y, z and t into
thread blocks.

• Compute over a triangle at all
grid-points~q in x dimension:

Ft(~q) = ei~q·~rst

thread block

M

Ti,j,kq0...n-1,j,k map

ny

nznx

triangles

Phase 2 Reduction.

• Partition along x, y and z into
thread blocks.

• Reduce all Ft at a grid-point~q:

F(~q) ≈
ht∑

t=1

Ft(~q)

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Optimizations: Choosing Hyperblock Size hx × hy × hz × ht

• Crucial for high performance.

• Small size = low parallelism + large number of data transfers.

• Large size = transfer of large amounts of data.

• Find a good balance, explore the search space.

• Example heat maps of runtimes with varying hy and hz (4M q-points.)
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Optimizations: Choosing Thread Block Sizes

• Also crucial for high performance.

• Small size = not enough threads in warps, or small number of warps.

• Large size = small number of thread blocks (less parallelism).

• Find a balanced size, explore search space.

• Example runtime heat maps with varying thread block sizes.
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On clusters of multi-cores ...
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Computation Decomposition Hierarchy

• A lot simpler!

• Partition into tiles and hyperblocks.

• Use MPI across tiles, and OpenMP within a hyperblock.

• Exploit NUMA design: choose number of MPI processes per node,
number of threads per MPI process.

• Important to make effective use of caches. E.g.
• Preserve input data locality – blocking.
• Loop transformations.

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Again, Choosing Hyperblock Size

• Not as crucial as for GPUs.

• Attributed to the large L1, L2 and LLC caches.
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HipGISAXS performance ...
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Experimental Environments

• GPU Cluster: "TitanDev". Up to 930 nodes.
• NVIDIA Tesla X2050 Fermi GPUs,

• 6 GB device memory,

• 1.15 GHz CUDA core clock,

• AMD Opteron Interlagos 16 core CPU,

• 32 GB main memory,

• Gemini interconnects.

• CPU Cluster: "Hopper". Cray XE6. Up to 6,000 nodes.
• Dual AMD Opteron MagnyCours 12-core CPUs (total 24 cores),

• 2.1 GHz clock,

• 64 KB L1 and 512 KB L2 per core, 6 MB L3 shared by 6 cores,

• 32 GB main memory,

• Gemini interconnects.

• Single precision complex number computations.

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Scaling with Number of Nodes p: O(nt
p )

• GPU cluster = 1 to 930 nodes.
• One MPI process per node. 16 OpenMP threads on host.

• CPU cluster = 1 to 6,000 nodes (24 to 144,000 cores).
• Four MPI processes per node. 6 OpenMP threads per MPI process.

• Q-grid size = 91M q-points.

• Expected scaling = linear, observed = linear.
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Scaling with Input Size n & t: O(nt
p )

• Q-grid resolution, n = 0.9M to 91M q-points (left).

• Shape resolution, t = 40 to 91K triangles (right).

• Number of nodes used = 4.

• Expected = linear, observed = linear.
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Observations & Conclusions

Comparison GPU (930 Nodes) CPU (6,000 Nodes)

Single node speedup (wrt se-
quential code)

125× 20×

Performance ratio 1 6.25

Cluster speedup (relative to
single node)

900× (96%) 5400× (90%)

Throughput (billion q-points
per second)

999.98 941.07

Code base size ratio (LOC) 1.45 1

Development time person-
hours ratio

4 1

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Observations & Conclusions

• Implemented a high-performance GISAXS simulation code on GPU and
multi-core clusters.

• Proper decompositions and optimizations are crucial for high
performance.

• Brought down computational time from days and weeks to minutes and
seconds.

• Allows simulation of much larger samples (O(106) triangles) and with
higher resolutions (O(108) q-points) than previously feasible.

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Future Work

• Further optimizations.

• Utilize new features of NVIDIA K20 GPUs.

• Scaling study on Titan.

• Implement more capabilities (e.g. sample slicing, analytical
computations).

• Develop and implement fitting algorithms.

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab
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Thank you!
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Graphics Processor

• Specialized processor; works in conjunction with a CPU.
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NVIDIA CUDA and GPU Computing

• CUDA enables GPU
computing.

• Heterogeneous
serial-parallel, CPU-GPU
programming model.

• Scalable – 100s of cores, 1000s
of threads.

• Minimal extensions to
C/C++ environment.

• Decomposed into a Grid of Thread Blocks
containing Threads.

• Array of threads execute a kernel.

• Threads in a block can cooperate through
on-chip shared memory.

• Threads in different blocks cannot cooperate
with each other easily.

• Each thread block is scheduled to an SM.

• Thread blocks may execute in any order.

Massively Parallel X-ray Scattering Simulations @ SC’12 Abhinav Sarje @ Berkeley Lab



DWBA Theory
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Code Optimizations: Examples

• Select optimal size for hyperblocks.

• Select optimal size for CUDA thread blocks.

• Memory optimizations:
• Making full use of memory hierarchy; favoring shared memory (48K).

• Using shared memory for input data reuse and output memory coalescing.

• Padding and packing data to reduce number of memory transfers and
ensure memory coalescing (6 to 3 per thread block).

• Double buffering through multiple streams to hide device-host memory
latencies.

• Pinning host memory buffers.

• Modifying memory access patterns to eliminate shared memory bank
conflicts (24% to 0%).
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Hyperblock Sizes for Various Kernel Implementations
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Scaling with Number of Nodes p: O(nt
p )
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Scaling with Q-grid Resolution n: O(nt
p )
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Scaling with Shape Resolution t: O(nt
p )
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